Extensions 1→N→G→Q→1 with N=C22xS3 and Q=C4

Direct product G=NxQ with N=C22xS3 and Q=C4
dρLabelID
S3xC22xC448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C22xS3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xS3):C4 = C23.6D6φ: C4/C1C4 ⊆ Out C22xS3244(C2^2xS3):C496,13
(C22xS3):2C4 = S3xC22:C4φ: C4/C2C2 ⊆ Out C22xS324(C2^2xS3):2C496,87
(C22xS3):3C4 = C2xD6:C4φ: C4/C2C2 ⊆ Out C22xS348(C2^2xS3):3C496,134

Non-split extensions G=N.Q with N=C22xS3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xS3).C4 = C12.46D4φ: C4/C1C4 ⊆ Out C22xS3244+(C2^2xS3).C496,30
(C22xS3).2C4 = D6:C8φ: C4/C2C2 ⊆ Out C22xS348(C2^2xS3).2C496,27
(C22xS3).3C4 = C2xC8:S3φ: C4/C2C2 ⊆ Out C22xS348(C2^2xS3).3C496,107
(C22xS3).4C4 = S3xM4(2)φ: C4/C2C2 ⊆ Out C22xS3244(C2^2xS3).4C496,113
(C22xS3).5C4 = S3xC2xC8φ: trivial image48(C2^2xS3).5C496,106

׿
x
:
Z
F
o
wr
Q
<